Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.068
Filtrar
1.
Mol Biol Rep ; 51(1): 507, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622406

RESUMEN

BACKGROUND: Our previous research has demonstrated that hypoxic preconditioning (HPC) can improve spatial learning and memory abilities in adult mice. Adult hippocampal neurogenesis has been associated with learning and memory. The Neurogenic locus notch homolog protein (Notch) was involved in adult hippocampal neurogenesis, as well as in learning and memory. It is currently unclear whether the Notch pathway regulates hippocampal neuroregeneration by modifying the DNA methylation status of the Notch gene following HPC. METHOD: The HPC animal model and cell model were established through repeated hypoxia exposure using mice and the mouse hippocampal neuronal cell line HT22. Step-down test was conducted on HPC mice. Real-time PCR and Western blot analysis were used to assess the mRNA and protein expression levels of Notch1 and hairy and enhancer of split1 (HES1). The presence of BrdU-positive cells and Notch1 expression in the hippocampal dental gyrus (DG) were examined with confocal microscopy. The methylation status of the Notch1 was analyzed using methylation-specific PCR (MS-PCR). HT22 cells were employed to elucidate the impact of HPC on Notch1 in vitro. RESULTS: HPC significantly improved the step-down test performance of mice with elevated levels of mRNA and protein expression of Notch1 and HES1 (P < 0.05). The intensities of the Notch1 signal in the control group, the H group and the HPC group were 2.62 ± 0.57 × 107, 2.87 ± 0.84 × 107, and 3.32 ± 0.14 × 107, respectively, and the number of BrdU (+) cells in the hippocampal DG were 1.83 ± 0.54, 3.71 ± 0.64, and 7.29 ± 0.68 respectively. Compared with that in C and H group, the intensity of the Notch1 signal and the number of BrdU (+) cells increased significantly in HPC group (P < 0.05). The methylation levels of the Notch1 promoter 0.82 ± 0.03, 0.65 ± 0.03, and 0.60 ± 0.02 in the C, H, and HPC groups, respectively. The methylation levels of Notch1 decreased significantly (P < 0.05). The effect of HPC on HT22 cells exhibited similarities to that observed in the hippocampus. CONCLUSION: HPC may confer neuroprotection by activating the Notch1 signaling pathway and regulating its methylation level, resulting in the regeneration of hippocampal neurons.


Asunto(s)
Metilación de ADN , Hipocampo , Ratones , Animales , Metilación de ADN/genética , Bromodesoxiuridina/metabolismo , Hipocampo/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Receptores Notch/metabolismo , ARN Mensajero/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
2.
Front Immunol ; 15: 1375864, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650927

RESUMEN

Immunotherapy has emerged as the primary treatment modality for patients with advanced Hepatocellular carcinoma (HCC). However, its clinical efficacy remains limited, benefiting only a subset of patients, while most exhibit immune tolerance and face a grim prognosis. The infiltration of immune cells plays a pivotal role in tumor initiation and progression. In this study, we conducted an analysis of immune cell infiltration patterns in HCC patients and observed a substantial proportion of CD8+T cells. Leveraging the weighted gene co-expression network analysis (WGCNA), we identified 235 genes associated with CD8+T cell and constructed a risk prediction model. In this model, HCC patients were stratified into a high-risk and low-risk group. Patients in the high-risk group exhibited a lower survival rate, predominantly presented with intermediate to advanced stages of cancer, displayed compromised immune function, showed limited responsiveness to immunotherapy, and demonstrated elevated expression levels of the Notch signaling pathway. Further examination of clinical samples demonstrated an upregulation of the Notch1+CD8+T cell exhaustion phenotype accompanied by impaired cytotoxicity and cytokine secretion functions that worsened with increasing Notch activation levels. Our study not only presents a prognostic model but also highlights the crucial involvement of the Notch pathway in CD8+T cell exhaustion-a potential target for future immunotherapeutic interventions.


Asunto(s)
Linfocitos T CD8-positivos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Transducción de Señal , Humanos , Linfocitos T CD8-positivos/inmunología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Pronóstico , Receptores Notch/genética , Receptores Notch/metabolismo , Regulación Neoplásica de la Expresión Génica , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Masculino , Femenino , Biomarcadores de Tumor/genética , Receptor Notch1/genética , Persona de Mediana Edad
3.
Cell Mol Life Sci ; 81(1): 195, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38653877

RESUMEN

The Notch pathway is an evolutionarily conserved signaling system that is intricately regulated at multiple levels and it influences different aspects of development. In an effort to identify novel components involved in Notch signaling and its regulation, we carried out protein interaction screens which identified non-muscle myosin II Zipper (Zip) as an interacting partner of Notch. Physical interaction between Notch and Zip was further validated by co-immunoprecipitation studies. Immunocytochemical analyses revealed that Notch and Zip co-localize within same cytoplasmic compartment. Different alleles of zip also showed strong genetic interactions with Notch pathway components. Downregulation of Zip resulted in wing phenotypes that were reminiscent of Notch loss-of-function phenotypes and a perturbed expression of Notch downstream targets, Cut and Deadpan. Further, synergistic interaction between Notch and Zip resulted in highly ectopic expression of these Notch targets. Activated Notch-induced tumorous phenotype of larval tissues was enhanced by over-expression of Zip. Notch-Zip synergy resulted in the activation of JNK pathway that consequently lead to MMP activation and proliferation. Taken together, our results suggest that Zip may play an important role in regulation of Notch signaling.


Asunto(s)
Proteínas de Drosophila , Proteínas de la Membrana , Cadenas Pesadas de Miosina , Receptores Notch , Transducción de Señal , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Receptores Notch/metabolismo , Receptores Notch/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Alas de Animales/metabolismo , Alas de Animales/crecimiento & desarrollo , Drosophila/metabolismo , Drosophila/genética , Fenotipo , Metaloproteinasas de la Matriz/metabolismo , Metaloproteinasas de la Matriz/genética , Proliferación Celular , Miosina Tipo II/metabolismo , Miosina Tipo II/genética
4.
Cell Death Dis ; 15(4): 284, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654000

RESUMEN

Intestinal stem cells (ISCs) play a crucial role in the continuous self-renewal and recovery of the intestinal epithelium. In previous studies, we have revealed that the specific absence of Claudin-7 (Cldn-7) in intestinal epithelial cells (IECs) can lead to the development of spontaneous colitis. However, the mechanisms by which Cldn-7 maintains homeostasis in the colonic epithelium remain unclear. Therefore, in the present study, we used IEC- and ISC-specific Cldn-7 knockout mice to investigate the regulatory effects of Cldn-7 on colonic Lgr5+ stem cells in the mediation of colonic epithelial injury and repair under physiological and inflammatory conditions. Notably, our findings reveal that Cldn-7 deletion disrupts the self-renewal and differentiation of colonic stem cells alongside the formation of colonic organoids in vitro. Additionally, these Cldn-7 knockout models exhibited heightened susceptibility to experimental colitis, limited epithelial repair and regeneration, and increased differentiation toward the secretory lineage. Mechanistically, we also established that Cldn-7 facilitates the proliferation, differentiation, and organoid formation of Lgr5+ stem cells through the maintenance of Wnt and Notch signalling pathways in the colonic epithelium. Overall, our study provides new insights into the maintenance of ISC function and colonic epithelial homoeostasis.


Asunto(s)
Claudinas , Colon , Homeostasis , Ratones Noqueados , Receptores Notch , Células Madre , Vía de Señalización Wnt , Animales , Células Madre/metabolismo , Células Madre/citología , Receptores Notch/metabolismo , Claudinas/metabolismo , Claudinas/genética , Ratones , Colon/metabolismo , Diferenciación Celular , Colitis/metabolismo , Colitis/patología , Colitis/inducido químicamente , Mucosa Intestinal/metabolismo , Organoides/metabolismo , Ratones Endogámicos C57BL , Proliferación Celular , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética
5.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542260

RESUMEN

Notch signaling is involved in the prevention of cell differentiation and cell fate in various organs, including the lungs. We aimed to determine the transcriptomic and protein expression of Notch receptors, their ligands, and related transcription factors in stable COPD. The expression and localization of Notch receptors, their ligands, and related transcription factors were measured in bronchial biopsies of individuals with stable mild/moderate (MCOPD) (n = 18) or severe/very severe (SCOPD) (n = 16) COPD, control smokers (CSs) (n = 13), and control nonsmokers (CNSs) (n = 11), and in the lung parenchyma of those with MCOPD (n = 13), CSs (n = 10), and CNSs (n = 10) using immunohistochemistry, ELISA tests, and transcriptome analyses. In the bronchial biopsies, Notch4 and HES7 significantly increased in the lamina propria of those with SCOPD compared to those with MCOPD, CSs, and CNSs. In the peripheral lung bronchiolar epithelium, Notch1 significantly increased in those with MCOPD and CSs compared to CNSs. ELISA tests of lung parenchyma homogenates showed significantly increased Notch2 in those with MCOPD compared to CSs and CNSs. Transcriptomic data in lung parenchyma showed increased DLL4 and HES1 mRNA levels in those with MCOPD and CSs compared to CNSs. These data show the increased expression of the Notch pathway in the lungs of those with stable COPD. These alterations may play a role in impairing the regenerative-reparative responses of diseased bronchioles and lung parenchyma.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Diferenciación Celular/genética , Receptor Notch1/metabolismo
6.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542296

RESUMEN

The highly conserved Notch signaling pathway affects embryonic development, neurogenesis, homeostasis, tissue repair, immunity, and numerous other essential processes. Although previous studies have demonstrated the location and function of the core components of Notch signaling in various animal phyla, a more comprehensive summary of the Notch core components in lower organisms is still required. In this review, we objectively summarize the molecular features of the Notch signaling pathway constituents, their current expression profiles, and their functions in invertebrates, with emphasis on their effects on neurogenesis and regeneration. We also analyze the evolution and other facets of Notch signaling and hope that the contents of this review will be useful to interested researchers.


Asunto(s)
Invertebrados , Receptores Notch , Animales , Receptores Notch/genética , Receptores Notch/metabolismo , Invertebrados/metabolismo , Transducción de Señal
7.
Trends Genet ; 40(4): 293-295, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493041

RESUMEN

The Notch signaling pathway is a highly conserved, fundamental process to embryogenesis and neurogenesis. While force-induced conformational change is known to activate Notch receptors, Smyrlaki et al. recently used DNA origami to reveal an additional, force-independent mode of Notch activation via soluble presentation of spatially controlled ligand nanopatterns.


Asunto(s)
Receptores Notch , Transducción de Señal , Receptores Notch/genética , Receptores Notch/metabolismo , Desarrollo Embrionario , Neurogénesis , ADN/genética
8.
Protein Sci ; 33(4): e4947, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38511488

RESUMEN

Notch signaling in humans is mediated by four paralogous receptors that share conserved architectures and possess overlapping, yet non-redundant functions. The receptors share a canonical activation pathway wherein upon extracellular ligand binding, the Notch intracellular domain (NICD) is cleaved from the membrane and translocates to the nucleus where its N-terminal RBP-j-associated molecule (RAM) region and ankyrin repeat (ANK) domain bind transcription factor CSL and recruit co-activator Mastermind-like-1 (MAML1) to activate transcription. However, different paralogs can lead to distinct outcomes. To better understand paralog-specific differences in Notch signaling, we performed a thermodynamic analysis of the Notch transcriptional activation complexes for all four Notch paralogs using isothermal titration calorimetry. Using chimeric constructs, we find that the RAM region is the primary determinant of stability of binary RAMANK:CSL complexes, and that the ANK regions are largely the determinants of MAML1 binding to pre-formed RAMANK:CSL complexes. Free energies of these binding reactions (ΔGRA and ΔGMAML) vary among the four Notch paralogs, although variations for Notch2, 3, and 4 offset in the free energy of the ternary complex (ΔGTC, where ΔGTC = ΔGRA + ΔGMAML). To probe how these affinity differences affect Notch signaling, we performed transcriptional activation assays with the paralogous and chimeric NICDs, and analyzed the results with an independent multiplicative model that quantifies contributions of the paralogous RAM, ANK, and C-terminal regions (CTR) to activation. This analysis shows that transcription activation correlates with ΔGTC, but that activation is further modified by CTR identity in a paralog-specific way.


Asunto(s)
Regulación de la Expresión Génica , Receptores Notch , Humanos , Activación Transcripcional , Receptores Notch/genética , Receptores Notch/química , Receptores Notch/metabolismo , Unión Proteica , Termodinámica , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo
9.
Molecules ; 29(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474544

RESUMEN

Epidermal growth factor (EGF) repeats are present in various proteins and form well-defined structures with three disulfide bonds. One representative protein is the Notch receptor. Each EGF repeat contains unique atypical O-linked glycans, such as O-linked N-acetylglucosamine (O-GlcNAc). To generate a monoclonal antibody against the O-GlcNAc moiety in mouse Notch1, we expressed the recombinant C-terminal His6-tagged Notch1 EGF14-15 protein in HEK293T cells to prepare the immunogen. Most of the proteins were not secreted and showed higher molecular weight ladders in the cell lysate, suggesting protein aggregation. To overcome this issue, we fused Sparcl1 as an extracellular escorting tag to the N-terminus of Notch1 EGF14-15. The fusion protein was efficiently secreted extracellularly without protein aggregates in the lysates. Following PreScission protease treatment, Notch1 EGF14-15 was efficiently released from the escorting tag. Notch1 EGF14-15 prepared using this method was indeed O-GlcNAcylated. The optimal length of the escorting tag was determined by generating deletion mutants to improve the extracellular secretion of EGF14-15. Hence, a large amount of EGF14-15 was successfully prepared from the culture supernatant of HEK293T cells, which were otherwise prone to aggregation.


Asunto(s)
Factor de Crecimiento Epidérmico , Receptores Notch , Humanos , Animales , Ratones , Factor de Crecimiento Epidérmico/química , Células HEK293 , Receptores Notch/metabolismo , Receptor Notch1/química , Acetilglucosamina/metabolismo , Proteínas de Unión al Calcio , Proteínas de la Matriz Extracelular/metabolismo
10.
Cancer Lett ; 585: 216647, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38301911

RESUMEN

The Notch signaling pathway plays pivotal roles in cell proliferation, stemness and invasion of non-small cell lung cancer (NSCLC). The human Notch family consists of four receptors, namely Notch1, Notch2, Notch3, and Notch4. These receptors are transmembrane proteins that play crucial roles in various cellular processes. Notch1 mostly acts as a pro-carcinogenic factor in NSCLC but sometimes acts as a suppressor. Notch2 has been demonstrated to inhibit the growth and progression of NSCLC, whereas Notch3 facilitates these biological behaviors of NSCLC. The role of Notch4 in NSCLC has not been fully elucidated, but it is evident that Notch4 promotes tumor progression. At present, drugs targeting the Notch pathway are being explored for NSCLC therapy, a majority of which are already in the stage of preclinical research and clinical trials, with bright prospects in the clinical treatment of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Receptor Notch1/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Receptores Notch/metabolismo , Receptor Notch2/metabolismo , Receptor Notch3 , Transducción de Señal
11.
J Cell Biol ; 223(5)2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38358349

RESUMEN

Different membrane microdomain compositions provide unique environments that can regulate signaling receptor function. We identify microdomains on the endosome membrane of Drosophila endosomes, enriched in lipid-raft or clathrin/ESCRT-0, which are associated with Notch activation by distinct, ligand-independent mechanisms. Transfer of Notch between microdomains is regulated by Deltex and Suppressor of deltex ubiquitin ligases and is limited by a gate-keeper role for ESCRT complexes. Ubiquitination of Notch by Deltex recruits it to the clathrin/ESCRT-0 microdomain and enhances Notch activation by an ADAM10-independent/TRPML-dependent mechanism. This requirement for Deltex is bypassed by the downregulation of ESCRT-III. In contrast, while ESCRT-I depletion also activates Notch, it does so by an ADAM10-dependent/TRPML-independent mechanism and Notch is retained in the lipid raft-like microdomain. In the absence of such endosomal perturbation, different activating Notch mutations also localize to different microdomains and are activated by different mechanisms. Our findings demonstrate the interplay between Notch regulators, endosomal trafficking components, and Notch genetics, which defines membrane locations and activation mechanisms.


Asunto(s)
Proteínas de Drosophila , Drosophila , Proteínas de la Membrana , Receptores Notch , Canales de Potencial de Receptor Transitorio , Animales , Proteína ADAM10/metabolismo , Clatrina/metabolismo , Regulación hacia Abajo , Proteínas de Drosophila/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Receptores Notch/metabolismo , Ubiquitinación , Proteínas de la Membrana/metabolismo , Microdominios de Membrana/metabolismo
12.
Science ; 383(6683): eade8064, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38330107

RESUMEN

Penile erection is mediated by the corpora cavernosa, a trabecular-like vascular bed that enlarges upon vasodilation, but its regulation is not completely understood. Here, we show that perivascular fibroblasts in the corpora cavernosa support vasodilation by reducing norepinephrine availability. The effect on penile blood flow depends on the number of fibroblasts, which is regulated by erectile activity. Erection dynamically alters the positional arrangement of fibroblasts, temporarily down-regulating Notch signaling. Inhibition of Notch increases fibroblast numbers and consequently raises penile blood flow. Continuous Notch activation lowers fibroblast numbers and reduces penile blood perfusion. Recurrent erections stimulate fibroblast proliferation and limit vasoconstriction, whereas aging reduces the number of fibroblasts and lowers penile blood flow. Our findings reveal adaptive, erectile activity-dependent modulation of penile blood flow by fibroblasts.


Asunto(s)
Transportador 1 de Aminoácidos Excitadores , Fibroblastos , Erección Peniana , Pene , Receptores Notch , Animales , Masculino , Ratones , Circulación Sanguínea , Transportador 1 de Aminoácidos Excitadores/metabolismo , Fibroblastos/metabolismo , Fibroblastos/fisiología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Erección Peniana/fisiología , Pene/irrigación sanguínea , Pene/fisiología , Receptores Notch/metabolismo , Transducción de Señal , Vasoconstricción , Vasodilatación
13.
J Clin Invest ; 134(8)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386425

RESUMEN

Loss of arterial smooth muscle cells (SMCs) and abnormal accumulation of the extracellular domain of the NOTCH3 receptor (Notch3ECD) are the 2 core features of CADASIL, a common cerebral small vessel disease caused by highly stereotyped dominant mutations in NOTCH3. Yet the relationship between NOTCH3 receptor activity, Notch3ECD accumulation, and arterial SMC loss has remained elusive, hampering the development of disease-modifying therapies. Using dedicated histopathological and multiscale imaging modalities, we could detect and quantify previously undetectable CADASIL-driven arterial SMC loss in the CNS of mice expressing the archetypal Arg169Cys mutation. We found that arterial pathology was more severe and Notch3ECD accumulation greater in transgenic mice overexpressing the mutation on a wild-type Notch3 background (TgNotch3R169C) than in knockin Notch3R170C/R170C mice expressing this mutation without a wild-type Notch3 copy. Notably, expression of Notch3-regulated genes was essentially unchanged in TgNotch3R169C arteries. We further showed that wild-type Notch3ECD coaggregated with mutant Notch3ECD and that elimination of 1 copy of wild-type Notch3 in TgNotch3R169C was sufficient to attenuate Notch3ECD accumulation and arterial pathology. These findings suggest that Notch3ECD accumulation, involving mutant and wild-type NOTCH3, is a major driver of arterial SMC loss in CADASIL, paving the way for NOTCH3-lowering therapeutic strategies.


Asunto(s)
CADASIL , Ratones , Animales , Receptor Notch3/genética , CADASIL/genética , CADASIL/metabolismo , CADASIL/patología , Agregado de Proteínas , Receptores Notch/genética , Receptores Notch/metabolismo , Arterias/patología , Ratones Transgénicos , Mutación
14.
Cell Rep ; 43(3): 113837, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38402584

RESUMEN

Communication between adjacent endothelial cells is important for the homeostasis of blood vessels. We show that quiescent endothelial cells use Jagged1 to instruct neighboring endothelial cells to assume a quiescent phenotype and secure the endothelial barrier. This phenotype enforcement by neighboring cells is operated by R-Ras through activation of Akt3, which results in upregulation of a Notch ligand Jagged1 and consequential upregulation of Notch target genes, such as UNC5B, and VE-cadherin accumulation in the neighboring cells. These signaling events lead to the stable interaction between neighboring endothelial cells to continue to fortify juxtacrine signaling via Jagged1-Notch. This mode of intercellular signaling provides a positive feedback regulation of endothelial cell-cell interactions and cellular quiescence required for the stabilization of the endothelium.


Asunto(s)
Células Endoteliales , Proteínas de la Membrana , Proteínas Serrate-Jagged , Células Endoteliales/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Unión al Calcio/genética , Péptidos y Proteínas de Señalización Intercelular , Receptores Notch/metabolismo , Proteína Jagged-1/genética
15.
Cells Dev ; 177: 203908, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38403117

RESUMEN

The Notch signaling pathway, an evolutionarily highly conserved pathway, participates in various essential physiological processes in organisms. Activation of Notch signaling in the canonical manner requires the combination of ligand and receptor. There are two ligands of Notch in Drosophila: Delta (Dl) and Serrate (Ser). A mutation mf157 is identified for causing nicks of fly wings in genetic analysis from a mutant library (unpublished) that was established previously. Immunofluorescent staining illustrates that mf157 represses the expression of Cut and Wingless (Wg), the targets of Notch signaling. MARCM cloning analysis reveals that mf157 functions at the same level or the upstream of ligands of Notch in signaling sending cells. Sequencing demonstrates that mf157 is a novel allele of the Ser gene. Subsequently, mf553 and mf167 are also identified as new alleles of Ser from our library. Furthermore, the complementary assays and the examination of transcripts confirm the sequencing results. Besides, the repressed phenotypes of Notch signaling were reverted by transposon excision experiments of mf157. In conclusion, we identify three fresh alleles of Ser. Our works supply additional genetic resources for further study of functions of Ser and Notch signaling regulation.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas Serrate-Jagged/genética , Proteínas Serrate-Jagged/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Alelos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-1/genética , Receptores Notch/genética , Receptores Notch/metabolismo
16.
Biochem Biophys Res Commun ; 703: 149610, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38359610

RESUMEN

O-GlcNAc is a unique post-translational modification found in cytoplasmic, nuclear, and mitochondrial proteins. In a limited number of extracellular proteins, O-GlcNAc modifications occur through the action of EOGT, which specifically modifies subsets of epidermal growth factor-like (EGF) domain-containing proteins such as Notch receptors. The abnormalities due to EOGT mutations in mice and humans and the increased EOGT expression in several cancers signify the importance of EOGT pathophysiology and extracellular O-GlcNAc. Unlike intracellular O-GlcNAc monosaccharides, extracellular O-GlcNAc extends to form elongated glycan structures. However, the enzymes involved in the O-GlcNAc glycan extension have not yet been reported. In our study, we comprehensively screened potential galactosyltransferase and sialyltransferase genes related to the canonical O-GlcNAc glycan pathway and revealed the essential roles of B4GALT1 and ST3GAL4 in O-GlcNAc glycan elongation in human HEK293 cells. These findings were confirmed by sequential glycosylation of Drosophila EGF20 in vitro by EOGT, ß4GalT-1, and ST3Gal-IV. Thus, the findings from our study throw light on the specific glycosyltransferases that mediate O-GlcNAc glycan elongation in human HEK293 cells.


Asunto(s)
Acetilglucosamina , Receptores Notch , Humanos , Animales , Ratones , Células HEK293 , Acetilglucosamina/metabolismo , Receptores Notch/metabolismo , Galactosiltransferasas/genética , Glicosiltransferasas , Drosophila/metabolismo , Sialiltransferasas/genética , Polisacáridos
17.
Adv Biol Regul ; 91: 101013, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38290285

RESUMEN

Colon cancer is the second leading cause of cancer death. With over 153,000 new CRC cases predicted, it is the third most commonly diagnosed cancer. Early detection can lead to curative surgical intervention, but recurrent and late metastatic disease is frequently treated with chemotherapeutic options based on induction of DNA damage. Understanding mechanism(s) that regulate DNA damage repair within colon tumor cells is essential to developing effective therapeutic strategies. The Notch signaling pathway is known to participate in normal colon development and we have recently described a pathway by which Notch-1, Notch-3 and Smad may regulated EMT and stem-like properties in colon tumor cells, promoting tumorigenesis. Little is known about how Notch may regulate drug resistance. In this study, we used shRNA to generate colon tumor cells with loss of Notch-3 expression. These cells exhibited reduced expression of the base-excision repair proteins PARP1 and APE1, along with increased sensitivity to ara-c and cisplatin. These data point to a pathway in which Notch-3 signaling can regulate DNA repair within colon tumor cells and suggests that targeting Notch-3 may be an effective approach to rendering colon tumors sensitive to chemotherapeutic drugs.


Asunto(s)
Neoplasias del Colon , Receptores Notch , Humanos , Receptores Notch/metabolismo , Resistencia a Antineoplásicos/genética , 60562 , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , ADN/farmacología , Línea Celular Tumoral , Reparación del ADN/genética
18.
J Biosci ; 492024.
Artículo en Inglés | MEDLINE | ID: mdl-38173318

RESUMEN

To regulate biological activity in humans, the Notch signaling pathway (NSP) plays an essential role in a wide array of cellular development and differentiation process. In recent years, many studies have reported that aberrant activation of Notch is associated with the tumor process; but no appropriate database exists to fill this significant gap. To address this, we created a pioneering database NCSp, which is open access and comprises intercommunicating pathways and related protein mutations. This allows scientists to understand better the cause of single amino acid mutations in proteins. Therefore, NCSp provides information on the predicted functional effect of human protein mutations, which aids in understanding the importance of mutations linked to the Notch crosstalk signaling pathways in cancerous and non-cancerous systems. This database might be helpful for therapeutic mutation analysis, molecular biology, and structural biology researchers. The NCSp database can be accessed through https://bioserver3.physics.iisc.ac.in/cgi-bin/nccspd/.


Asunto(s)
Neoplasias , Motor de Búsqueda , Humanos , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/genética , Mutación
19.
Nat Commun ; 15(1): 226, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172511

RESUMEN

Hematopoietic stem and progenitor cells generate all the lineages of blood cells throughout the lifespan of vertebrates. The emergence of hematopoietic stem and progenitor cells is finely tuned by a variety of signaling pathways. Previous studies have revealed the roles of pattern-recognition receptors such as Toll-like receptors and RIG-I-like receptors in hematopoiesis. In this study, we find that Nlrc3, a nucleotide-binding domain leucine-rich repeat containing family gene, is highly expressed in hematopoietic differentiation stages in vivo and vitro and is required in hematopoiesis in zebrafish. Mechanistically, nlrc3 activates the Notch pathway and the downstream gene of Notch hey1. Furthermore, NF-kB signaling acts upstream of nlrc3 to enhance its transcriptional activity. Finally, we find that Nlrc3 signaling is conserved in the regulation of murine embryonic hematopoiesis. Taken together, our findings uncover an indispensable role of Nlrc3 signaling in hematopoietic stem and progenitor cell emergence and provide insights into inflammation-related hematopoietic ontogeny and the in vitro expansion of hematopoietic stem and progenitor cells.


Asunto(s)
Células Madre Hematopoyéticas , Pez Cebra , Animales , Ratones , Diferenciación Celular/genética , Células Madre Hematopoyéticas/metabolismo , Hematopoyesis/genética , Transducción de Señal , Receptores Notch/metabolismo
20.
Nat Commun ; 15(1): 465, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238313

RESUMEN

The Notch signaling pathway has fundamental roles in embryonic development and in the nervous system. The current model of receptor activation involves initiation via a force-induced conformational change. Here, we define conditions that reveal pulling force-independent Notch activation using soluble multivalent constructs. We treat neuroepithelial stem-like cells with molecularly precise ligand nanopatterns displayed from solution using DNA origami. Notch signaling follows with clusters of Jag1, and with chimeric structures where most Jag1 proteins are replaced by other binders not targeting Notch. Our data rule out several confounding factors and suggest a model where Jag1 activates Notch upon prolonged binding without appearing to need a pulling force. These findings reveal a distinct mode of activation of Notch and lay the foundation for the development of soluble agonists.


Asunto(s)
Receptores Notch , Transducción de Señal , Receptores Notch/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Transducción de Señal/fisiología , Proteínas de Unión al Calcio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...